A Theory of Lepton which is Invariant under Space Inversion
نویسندگان
چکیده
منابع مشابه
Theory and design of m-ary balanced codes which are invariant under symbol permutation
A symbol permutation invariant balanced (SPI-balanced) code over the alphabet Zm = {0, 1, . . . , m − 1} is a block code over Zm such that each alphabet symbol occurs as many times as any other symbol in every codeword. For this reason every permutation among the symbols of the alphabet changes a SPI-balanced code into a SPI-balanced code. This means that SPI-balanced words are “the most balanc...
متن کاملDiscretization-invariant Bayesian Inversion and Besov Space Priors
Bayesian solution of an inverse problem for indirect measurement M = AU + E is considered, where U is a function on a domain of R. Here A is a smoothing linear operator and E is Gaussian white noise. The data is a realization mk of the random variable Mk = PkAU + PkE, where Pk is a linear, finite dimensional operator related to measurement device. To allow computerized inversion, the unknown is...
متن کاملMenger probabilistic normed space is a category topological vector space
In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...
متن کاملModules which are invariant under monomorphisms of their injective hulls
In this paper certain injectivity conditions in terms of extensions of monomorphisms are considered. In particular, it is proved that a ring R is a quasi-Frobenius ring if and only if every monomorphism from any essential right ideal of RR into R (N) R can be extended to RR. Also, known results on pseudo-injective modules are extended. Dinh raised the question if a pseudo-injective CS module is...
متن کاملModules for which every non-cosingular submodule is a summand
A module $M$ is lifting if and only if $M$ is amply supplemented and every coclosed submodule of $M$ is a direct summand. In this paper, we are interested in a generalization of lifting modules by removing the condition"amply supplemented" and just focus on modules such that every non-cosingular submodule of them is a summand. We call these modules NS. We investigate some gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1958
ISSN: 0033-068X
DOI: 10.1143/ptp.19.740